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Review

Phase resetting and its possible role
in biological rhythms

Shunsuke SATO

1. Introduction

The living organisms show various rhythms
with periods ranging from a micro second to a
hundred years. The former is the:rhythm of
bio-molecules and the latter that of a human
life, for instance. The respiration, heart beat,
locomotion and alternation of generations are
also examples of the biological rhythm. The
sleep-wake rhythm of the period of 24 hours is
observed and the blood pressure, body tem-
perature, hormone secretion and so forth vary
with the same period.

Any biological rhythm can be observed
through an event, for instances, the initiation
of action potential in the case of pacemaker
neuron, waking-up in the sleep-wake rhythm,
and the R-wave of the electrocardiogram in
the heart beats.

Biological rhythms are influenced by ex-
ternally applied stimulus. For example, the
sleep-wake rhythm is affected by the rotation
of the earth. In fact, experiments on the
sleep-wake rhythm of a human subject eluci-
date the period is not 24 hours but about 25
hours if he is kept alone in the environment
without a cue on the time. This is called the
entrainment of the sleep-wake circadian
rhythm to the rotation of the earth.

A possible mechanism of the entrainment is
provided using a concept of phase resetting.

If a biological oscillator receives a perturba-
tion, timings of the repetitive events after the
perturbation are altered. Change in the timing
of the succeeding event from the preceding
ones is called the phase-resetting. The amount
of phase resetting depends on the magnitude
of a perturbation and on the phase in the
oscillation when it is applied.

This article is written based on the lecture at
the annual meeting of some academic society
by the present author and explains briefly the
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phase resetting and its possible role in bio-
logical rhythms. In Sec. 2, the notion of phase
resetting is introduced using a radial isochron
clock. In Sec. 3, the response of a limit cycle
oscillator to an externally applied perturba-
tion is explained. Phase-locked and chaotic
responses and others show up when the
oscillator is exposed to a periodic stimulus
train. In Sec. 4, a possible role of the phase
resetting is shown in the dynamic stability in
human locomotion against perturbation. In
Sec. b, symmetry breaking in human locomo-
tion is discussed in connection with bifurca-
tion of the solutions of a non-linear dynamical
system describing a coupled oscillator.

2. A simple limit cycle oscillator, the RIC

A limit cycle oscillator is often used to
model a biological rhythm. One of the main
reasons is that the rhythm itself possesses
properties which are not explained unless a
non-linear dynamical system is assumed.
Moreover, the rhythm could be described by a
single variable, the phase, although it is
essentially an event in the space of two
dimensions or more. To understand this more
precisely, let us consider a simple limit cycle
oscillator called the radial isochron clock (the
RIC hereafter) (Winfree, 1975). This clock is
described by a dynamical system of two
variables in the polar coordinate :
r=Kr(l—r),

{9:27I, ()

where, 7ER* =[0, =), §ES' (=a unit circle cir-
cumference) and K>>1 is a positive constant. A
trajectory starting from any initial point in the
phase plane, except the origin, i. e, the equi-
librium point of the clock, winds counter-
clockwise around it and approaches eventu-
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Fig.1 The radial isochron clock with limit cycle 7. (a)

Trajectories starting from various initial points
and a schematic explanation of eq (1),.(b) Phase
shift of a state point on 7 due to a brief
perturbation A

ally a unit circle (7) as the limit cycle. Fig. 1(a)
illustrates trajectories starting from P; and @; (i
=2, 3, 4) in the phase plane. Note that a state
point on the unit circle ¥ runs along it with
constant angular velocity 2z and hence the lap
time is the unity. Take a reference point E on
the limit cycle and call the half line starting
from the origin O and passing the point E the
event line". Take also the xycoordinate in such
a way that the x-axis coincides with the half
line.

1) When we see a biological rthythm, we find an observable event
such as “waking up” in the sleep-wake cyclé,' “the action potential”
in the case of a pacemaker neuron, “the R-wave” in the ECG and so
forth. We consider such an event takes place when the state pointt of

the oscillator underlying the rhythm crosses-the event line.
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Fig.2 A limit cycle 7 in the three dimensional space.
The isochron of a state xE7, W*(x), is depicted by
the dotted line. The equilibrium point of the
system is represented by a circle dot ©

Isochrons and Phases

Let x(t) and y(¢) be the trajectories starting at
a point P and a limit-cycle point @ both on the
radius OR, respectively (see Fig. 1(a)). Because
the angular and the radial dynamics of a state
point are independent with each other in the
case of the RIC (see eq(l)), points x(¢) and y(¢)
are always on the same radius rotating around
the origin O but the point x(f) approaches the
point y(f)E7, the intersection of y and the
radius passing through x(#), as the time ¢
elapses (see the line OR’ in Fig. 1(a)). Hence,
the straight line OR radiating from the origin
is called an isochron of the RIC. Any straight
line radiating from the origin constitutes an
isochron of the RIC. Let us consider a limit
cycle oscillator in the three dimensional space:
Describe the limit cycle by 7. A state point on
7 continues to move along it forever if no
perturbation is applied. Let T be the time for
the state point to go around the limit cycle.
Take a plane ¥ which crosses 7 transversally
as shown in Fig. 22,

Let the crossing point of 7 Wlth % bey. The
time for a state point starting from y at time 0
and reaching a state xE7y be 7(x). Then 0<17(x)
<T. Since T can be equated to 0,-we may put
0<1t(x)<T. Therefore, we consider a one-to-
one map 7 between time ¢, (0<¢<7T) and a point
x on 7..t=1(x). Let us call z(x) the time phase of
xE7. We then normalize the time-phase z(x) by
dividing it by T and denote the fraction by z(x)
newly.

For a point x” off the limit cycle 7, it is pos-

2) Suppose that every time a state point crosses the plane X, the
system generates a marker such as an action potential in the case of
a pacemaker neuron, for instance. The plane X corresponds to the

event line in the two dimensional case.
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sible to define the time-phase as follows : First
we note that the point x’ approaches the limit
cycle 7y eventually. Denote here the time evo-
lution of a system’s state x by U(x, ), i.e., let ¥
(x, t) express the state point at time ¢ which has
started from a state x at time 0. Suppose that
a state point x’ off ¥ and a point x on 7 start at
the same time #=0. After time ¢ x" and x
evolve to ¥(x’, ) and W(x, f), respectively. If
W(x’, t) approaches U(x, ©), i.e., if the distance
between W(x’, ) and ¥(x, ¢) tends to zero with ¢,
we consider that x’ is on the isochron of the
state x&7y. Thus we define the isochron W*(x)
of a state xE7 as follows:

Wex)= {x’EM : lim;- dis(T(x’, 1), T(x, 1))=0},
(2)

where M denotes the region of attraction of
the limit cycle. W°x) represents a set of state
points x’ that possess the same time-phase as
the point x&7 eventually (Kawato, 1981). In
this way, any x’ in the attractive region of 7
can be characterized by the isochron.

The response of a nonlinear oscillator with a
stable limit cycle to a single brief stimulus
(perturbation) can be described by the relation
between the phases before and after the stim-
ulus which we call the old and the new phases,
respectively (Nomura et al. 1993). Let x&E7y be a
state point right before a perturbation is
applied and x &7 the state point right after the
perturbation. Namely, the state point x is
moved to the point x” by the perturbation.

Suppose that x’€ W*(x), yE7, i. e., the point x’

has the same time-phase as the point yE7. Let
7(x) and z(x’)=17(y) denote the old and the new
phases, respectively. Let us represent the
relation between the old and the new phases
by amap: ©: S'—S!:

)=0x), or  Tuew=D(Tow). 3)

We call the graph of ® a basic phase
transition curve (BPTC). If the difference At=
Tnew — Tola 18 poOsitive, the amount describes the
phase advance due to the perturbation. If it is
negative, the perturbation causes the phase
delay. Ar is called the phase reset (see Fig. 1
(b)).. The plot of At against 7,4 is called the
phase response curve (the PRC). This curve
shows that the time phase of a limit cycle
oscillator can be controlled by an appropriate-
ly applied perturbation at a suitable time-
phase of the state point.

The position of a state point on the limit
cycle 7 can also be represented by the geo-
metrical phase : We define the event line as the
geometrical phase 0. Then, the geometrical
phase 0(x) of xE7 is defined as the angle bet-
ween the radius connecting the equilibrium
point and the point x and the event line
measured counterclockwise and normalized
by 2z. The geometrical phase may have one-
to-one correspondence to the state point x&7.
But note that it is not always the case. If it is
the case, we note also that the geometrical
phase 6(x) of a state x&7 are related with the
time phase 7(x) by amap g:

0=g(7) (4)

and the function g can be inverted in some
way : '

=g ). (5)

It is possible to define the old and new
geometrical phases and their relationship @, i.
e., the basic PTC (the BPTC), as we did for the
time phase. Let us denote the BPTC for the
geometrical and the time phases by ®, and @,
respectively. Provided that egs (4), (5) hold,
one has

7(x") =g~ H(Delg(T(x)))), (6)
- and hence
O, =g lodyeog (7)

Let us return to the RIC (Nomura et al. 1994
a). We apply a single pulse stimulus A to a
state point on 7 in such a way that it displaces
the state instantaneously by an amount |A |
in the positive or negative direction parallel
to the x-axis depending on the sign of A (see
Fig. 1(b)). Since isochrons are straight lines
through the origin in the case of the RIC, x’ and
y on the line OP’ share the same isochron, and
since both geometrical and time phases coin-
cide with each other, i. e., O(x)=g(z(x)) =1(x) for
any x&7, the phase after the RIC receives a
perturbation can be analytically computed. In
fact, the following relation holds:

SIN27Tow >

_ 1
Tnew™ o arctan( A +cos27Tou ®

Fig. 3 illustrates the phase response curve
(the PRC) of the RIC to various sizes of per-
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(a) The basic phase transition curves (BPTCs) for A=1.2 and A=—0.85. (b) The basic phase
transition curves (BPTCs) for A=12 and A=—1.2.

(c) The phase response curves (the

PRCs) of the RIC for the brief perturbations

(a) A=1.2, 1=0.95 (b) A=0.85, 1=0.52 (c) A=0.85, 1=0.6
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Fig. 4 Three examples of the orbit.
quasi-periodic orbit

turbation. Note that the average slope of the
BPTC (a) is unity and hence the BPTC is called
type 1. In (b), by subtracting one from the
right half of the curve for A=1.2 one has a
continuous curve as shown in the lower part.
The average slope of each curve is 0 and hence
the BPTC is called type 0.

3. The Phase Transition Curve (the PTC) and
Phase Locking

Nomura et al. (1994a) described the response
of the RIC to a periodic pulse train of period 7
measured in the unit of T (see also references
quoted therein). If the period of the stimulus is
not too small compared with unity, the state
point displaced away from the limit cycle by
the n-th stimulus is practically back on the
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(a) the 1:1 phase-locking, (b) the 2:1 phase locking, (¢) the

limit cycle when the n+1-th stimulus is ap-
plied. Let 7, be the time-phase of x,&7 when
the n-th stimulus is applied, and 7, be that of
the perturbed point x,. Then the relation z,’=
®z,) holds. The n+1-th stimulus is applied
after time 7 and its time phase t7,+; is expressed
as follows:

Tn+1= OT,) +1(mod 1)=fA7y) 9

The map fi: S'=S' in eq(9) is called the
phase transition curve (the PTC) and is ob-
tained by shifting the BPTC upward by I, pro-
vided that it is expressed as the time phase®.
The map f7: S'—=S}, eq(9), is sometimes called a

3) This is an advantage of using the time phase to express the PTC.
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Poincaré map. Note that for any initial phase
7o, the map f/(7) leads inductively to define the
sequence {z,} as follows:

T =fiTn—1) =f(Tn-1) =" =fF(T0) (10)

The successive time phases 7y, 71, ***, sepa-
rated by the fixed interval I can be plotted on
the PTC (see Fig. 4). We call a locus of the se-
quence {z,} an orbit. If 7,=7¢ and ©,# 1o for
1<n<p with n and p being positive integers,
{z.} is called a periodic sequence or a periodic
orbit of period p. A periodic orbit of period p is
called to be stable if the following equation
holds:

ot of;
?(To)‘ ]HO al

A periodic orbit with |8ff(z0)/0z| =0 is called
a superstable orbit. A superstable orbit con-
tains one or more extermal points of the PTC
as its periodic point(s).

Thus, the behavior of an oscillator exposed
to a periodic pulse train can be described
approximately but acceptably by the one
dimensional map (PTC), provided that 7/ is not
too small. If the map f; has a stable periodic
point(s) of period P(ff(r)=1), timings between
the input perturbation and the oscillator
output (the event) are fixed. In this case, we
call the oscillator output is phase locked.

See Fig.4(a) and (b). Let us consider the
periodic points 7o, 71, *, Tp-1. As is already
mentioned, 7; is the time-phase of the oscillator
right before the i-th perturbation is applied
(=0, 1, ---, p—1). The phase of the perturbed
state right after the perturbation is 7/ =®.(%), i
e., the phase of the perturbed state is reset to
7, =®/(1r;). We called the difference z;’—1; the
amount of the phase reset. Now, the (i+1)-th
perturbation is applied after time 7, i. e, at time
;' +1. If [t;’+I]=n; where [x] denotes the inte-
ger part of x, the state point crosses the event
line n; times and hence the oscillator generates
the events n; times, before it receives (1+1)-th
perturbation at the phase ¢,’+/—[¢/+I]=7'+1
(mod 1) (¢=0, 1, ---, p—1). In this way, the
oscillator receives p perturbations and the
time phase of the oscillator right before the
p-th perturbation is 7p again at the steady state
and the same situations are repeated. In other
words, while the system receives p periodic
perturbations, it generates g=no+n;+---+n,-;
events and a sequence of these events is
repeated. Hence we call this situation as the

()| <1 an

p : g phase locking. Fig. 4(a) provides an exam-
ple of the periodic point of p=1, where 7=
0.9085...,7=0.9585. ... Parameters are set as
A=1.2 and I=0.95. Everytime a perturbation
is applied, the phase advances by 7—7=0.b
and then the oscillator generates an event
before the next perturbation is applied at the
phase 7,=0.9085.... This is an example of the
1:1 phase locking. Fig. 4(b) depicts the case
where parameters are set as A=0.85 and /=
0.52. The periodic points are 70=0.3755... and
7:=0.7386.... Since 75'=0.(70)=0.2186... and
7o +1=7,=0. 7386 .<1, hence the oscillator
does not cross the event line. While 7,"=®.7;)
=0.8555... and 7;’+7/=1.3755....
[1.3755...]=1 and 1.3755...(mod 1)=0.3755...
=1. Thus the phase of the state point takes 7,
again. In this case, the oscillator crosses the
event line and it generates the event before it
receives the third perturbation. This provides
the 2 : 1 phase-locked response. In (c), the time
phase shifts bit by bit at every time when a
perturbation is applied and the oscillator’s
outputs are not phase-locked but quasi phase-
locked.

Fig. 5 illustrates examples of the responses
to periodic stimuli, showing how the the
events indicated by the longer arrows entrain
the periodic stimuli whose timings are shown
by the shorter arrows. In Fig. 5(c) the response

(a) A=1.2, 1=0.95

? A A A 4
01234567 8 910111213141516171819

(b) A=0.85, 1=0.52

titrtritertetettitettenstttt

16 18 20 22

(c) A=0.85, I=0.6

titrtteteereteetatseteesetett

0 2 4 6 8 10 12 14 16

18 20 22

Fig.5 Responses of the RIC to periodic stimulus trains.
(a) 1:1 phase-locked response, A=1.2, I=0.95, (b)
2:1 phase-locked response, A =0.85, [=0.52, (c) a
quasi-periodic response, A =0.82, /=0.6
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is quasi-periodic and no entrainment takes
place. There is a case where a chaotic response
occurs to a periodic stimulus train. If the
period of stimulus is much shorter than the
unity, the phase locking disappears sometimes
but various features including chaos show up
in the sequence {z,}.

The sleep-wave rhythm is a circadian
rhythm with period of about 25 hours and is
phase-locked to the 24 hours environmental
rhythm (the entrainment).

Segundo et al. (1991a, b) studied using cray-
fish on the influence, through an inhibitory
synapse, of pacemaker discharges upon the
pacemaker neurons in the slowly adapting
stretch receptor organ (SAQ). These neurons
discharge with an almost constant interspike
interval N. Fig. 6(a) illustrates a diagram of
the experimental setup. The inhibitory fiber
IF transmits a controlled pre-synaptic spike
train with constant interval I and elicits IPSPs
in the SAO pacemaker neuron, which modifies
the SAO pacemaker discharges. The instants
when the SAO fires were observed.

They obtained the series {73} and {¢;} where
T; denotes the interval between the (i—1)-th
and the i-th SAO spikes, and ¢;, the phase, the
interval between the i-th SAO spike and the
last inhibitory spike preceding it (see Fig. 6 b).
The phase thus defined is expressed as a
fraction between 0 and 1 after suitable nor-

IF

L 1
pre g
driver L';l UE': I
bi
—>
N|N Ti
so MY
: T 1 1
driven y 2 3 -1 0 i+l

Fig.6 (a) Diagram of the living preparation (modified
from Segundo et al., 1991a), (b) inhibitory period-
ic input from FAO (the fast adapting stretch re-
ceptor organ and the corresponding SAO output
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malization by I (not by N). Phases 0 and 1 are
equated. These series provide the input and
output spike trains and these experimental
data were analyzed in the framework of the-
ories of nonlinear dynamics and of stochastic
point processes. The basic plots were used to
display the interval T; or the phase ¢; against
the index ¢ of each spike or its occurrence time
t;., See Fig.7. Return maps were also used.
Responses were categorized into four classes,
which were p :q locking, intermittent, messy
erratic and messy stammering responses in
terms of pacemaker neuron discharges and
their relation with the driver’s discharges. The
intermittency is discharges practically locked
most of the time but were occasionally non-
locked for a brief period. Conjecturing as to a
hypothetical nonlinear dynamical system un-
derlying neuronal activity, they suggested
that locked, intermittent, and messy erratic
responses reflected, respectively, limit cycles,
quasiperiodicity and strange attractors on or
around twodimensional tori. Messy stammer-
ing would be due largely to noise when the

0.265
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342 order i 356
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~ e “. ..o., w'e o.. ‘0‘ % o
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e
I3
k=
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75 orderi 90

Fig.7 (a) A locked response of SAO to the inhibitory
periodic input, where N/I=0.38, (b) an inter-
mittent response for N/I=0.44
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membrane fluctuates near its firing threshold.

Nomura et al. (1994b) discussed the BVP
oscillator as a model of the SAO pacemaker
neurons, analyzed its responses to periodic
stimuli, and considered the joint implications
of their model and the physiological experi-
ments by Segundo et al. (1991a, b). They also
proposed a modified RIC with slow and fast
dynamics and used it as a model of the SAO
pacemaker neurons.

4. Locomotion and the dynamic stability

Research on the mechanism of human loco-
motion has over one hundred years history in
the brain science and it has been one of the
central problems in the field. At the beginning
of the last century, Sherrington and Laslett
(1903) observed that a central pattern gen-
erator in the spinal cord (the spinal CPG
hereafter) plays an essential role in the loco-
motion control of quadrupeds and possibly of
a man. Since then, the CPG has been inves-
tigated in the framework.

Recently, human bipedal locomotion draws
attention among robotics engineers. One of
the main features.of human locomotion is that
even if it is disturbed by an externally applied
perturbation, a man hardly falls down, indi-
cating that human locomotion has dynamic
stability.

Transient response of the locomotion to a
perturbation is called a stumbling reaction.
Yamasaki et al. (2003) tried to elucidate
functional roles of the phase reset possibly
used for the neural control of human locomo-
tion including the stumbling reaction. To this
end, they proposed a model of the locomotion
control system, which consists of five sub-
systems including the brain, the spinal CPG
and the musculo-skeletal system. Each of
these subsystems is considered as a dynamical
system consisting of appropriate states and
capable of exhibiting dynamical stability such
as limit cycle oscillation. The musculo-skeletal
subsystem was modeled by a double pendu-
lum, which receives both muscle torque and
externally applied force perturbation (the
ground reaction force was not considered for
simplicity, since their interest was to study the
stability of motion of a double pendulum to
external forces.). Perturbations applied to the
musclo-skeletal system during the steady state
walking push the state point of the locomotion
control system on the limit cycle away from it,

0.4 f N
0.3 '
0.2
0.1
Ad 0

0.1 F Short transient
-0.2 -:'25:.. 4
0.3 T _r_l.g’ﬁg transient
-0.4 | .

0 0.2 6.4 0.6 0.8 1.0
dstim

Fig.8 Plot of the phase responses of human walking on
the treadmill (modified from Nomura et al., 1998).
The . right shrank was pulled backward
impulsively during steady state walking. The
long (several) and short (a few) transient steps of
walking were necessary to obtain the plot
depending on the perturbation phase ¢um as
indicated by ellipses

either outside or inside the basin of attraction
of the limit cycle. Under these assumptions
and others, they studied the locomotion con-
trol system. They also provided the phase
response curve of the system modeled by a
double pendulum, which resembled the PRC
obtained during perturbed human walking
(Nomura et al., 1998 and see Fig. 8).

They also analyzed the bipedal locomotion
using a model with 7 joints based on the
locomotion control system. Their mathemati-
cal analysis suggested the phase reset of the
spinal CPG plays functional roles in locomo-
tion control mainly in two ways: 1) an ap-
propriate amount of the phase reset for a given
perturbation can contribute to relocating the
system’s state point outside the basin of at-
traction of the limit cycle back inside. 2) it can
also be useful in reducing the convergence
time or the so-called setting time (the time
necessary for the state point to return back the
limit cycle). These functions can be rephrased
as follows: a given perturbation applied dur-

~ ing a normal steady-state walking may induce

transient changes in the motion trajectory,
such as the stumbling and corrective reaction,
or may even result in critical changes such as
falling. An appropriate amount of the phase
reset of the walking rhythm can help shorten
the transient duration needed for reestablish-
ing the original steady-state walking and also
prevent the walker from falling.
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5. Symmetry breaking in human locomotion

According to the study of Sherrington, gait
of ‘quadruped locomotion is generated by the
spinal CPG. It can be assumed that the CPG
generates various types of oscillation pattern
responding to the strength of electrical or
chemical perturbation. In order'to explain the
alternative firings of motoneurons for gener-
ating the locomotion, Asai et al. (2003) pro-
posed a CPG model which consists of a pair of
neural nets symmetrically connected with in-
hibitory connections (each of which is called a
half center), although the structure of the
spinal CPG neural network is uncovered yet
physiologically.

The CPG model is expected to show alter-
native firings in view of the model structure,
but the relation between the model structure
and the oscillation patterns is not simple but
depends on the dynamics of the half center
model. Asai et al. described each of half cen-
ters by the FitzHugh-Nagumo equation (syn-
onymous with the BVP model) and connected
both centers with inhibitory connections.
Moreover, they assumed that each half-center
is regulated by a signal from the higher motor
center and the output from the half center
stimulates the motor neuron to the lower leg
to generate locomotion. The half centers are
equal with each other and there is no mas-
ter-slave relationship between them, -differ-
ently from the model of entrainment discussed
in the previous sections where a limit cycle
oscillator as a slave oscillator was stimulated
periodically by a master oscillator. Neverthe-
less, minute symmetry breaking in the expres-
sion of the equations describing the half-cen-
ter and/or small difference in the strength of
signals from the central nervous system to
half-centers may cause diversity in the loco-
motion patterns of the lower legs. They stud-
ied bifurcation of the solution of the CPG
dynamical system due to the change in the
values of parameters such as the coupling
coefficients, signal amplitude 'and so forth,
provided that the structure of the CPG model
possesses complete symmetry.

By obtaining the normal form of a dynaml-
cal system (Golubitsky and Shaeffer, 1985),
they also showed that the solution of the CPG
model can be classified roughly  into two
groups : cooperative and dis-cooperative oscil-
lating patterns. The CPG model shows in-
phase and out-phase oscillations. They call
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these a cooperative oscillating pattern.. They
also showed that the cooperative pattern
breaks down into a dis-cooperative one despite
of complete symmetry of the CPG. These are
characteristic features of the CPG models.
Furthermore, Asai et al. (2003) combined co-
operativity breaking in the CPG model with
disorder in cooperativity between the lower
limbs of a patient of Parkinson disease in ped-
aling special pedals (the left and right pedals
can move independently with each other). In
the CPG model, cooperativity breaking emerges
due to strength difference of the downgoing
signal from the higher central nervous:system
to each of two half-centers. They also showed
that non-cooperative and dis-cooperative ped-
aling patterns shown by clinical patients are
well reproduced by the oscillatory patterns of
the CPG model and both strengths of the
signals from the higher motor center to each of
half-centers and their difference played impor-
tant roles in generation and breaking down of
the cooperative oscillation patterns.

Porta et al. (1996) showed an interesting
experimental result on the circulatory system
of a decerebrate cat. In this experiment, they
aimed to obtain the influence of respiratory
rhythm on the sympathetic nerve activity.
They observed the temporal change of the
spike frequency of the sympathetic nerve
system which controls the heart beat of the
anaesthetized animal under various circum-
stances. The spike frequency varies with res-
piration rhythms showing 1:1 or 1:2 phase
locking. But z :m phase locking or even quasi-
periodic non-periodic (chaotic) phase locking
are also observed under the conditions 1) vein
block, 2) artery constriction, 3) vagal nerve
disconnect, 4) spinal cord dlsconnect and their
combinations.

6. Conclusions and discussions

In the present article, we explained the
phase resetting using a simple model of a limit
cycle oscillator, the RIC, and its possible roles
in biological rhythms. Biological rhythms can
be modeled using more sophisticated oscilla-
tors but the phase resetting can be explained
in the same framework as that of the RIC.

We note here that there are two essentially
different basic phase transition curves (BPTC),
depending on the strength of the perturbation.
Effects of perturbating a limit cycle oscillator,
the RIC in this case, are schematically depicted
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Fig.9 The circles ¥ and 7 indicate the limit cycle and

the perturbed limit cycle, respectively. (a) Type
1, (b) Type O

in Fig. 9. Perturbations shift the limit cycle 7
and result in the perturbed cycle 7. If the per-
turbed cycle encloses the equilibrium point,
type 1 phase resetting takes place. If the per-
turbed cycle does not enclose the equilibrium
point, one has type 0 phase resetting. See Fig.
9 and Fig. 3(a, b). For more precise discussion,
see Glass and Winfree (1984).

Nomura et al. (1994a) discussed the behavior
of a pacemaker neuron exposed to a periodic
pulse train using a modified RIC. They dis-
cussed a coupled system of two equal half-
centers as a CPG model and showed emer-
gence of cooperative motion as well as the
symmetry breaking in the system’s behavior.

Much has been done both experimentally
and theoretically on the phase reset in the
framework of biological rhythms. However,
the present article is not a review paper and
hence we did not mention the history and the
present circumstance of the studies on the
phase resetting.

Finally let us mention the role of noise in the
response of the SAO pacemaker as suggested
by Segundo et al. (1991a, b). Influence of noise
cannot be neglected on the dynamics of some
phenomenon. In fact, information processing
in the microscopic level of biology, for in-
stance, the sensory receptor, makes active use
of the environmental noise (Segundo et al.,
1994). A simulation study using the van der
Pol equation suggests that environmental
fluctuation may cause an essential change in
the behavior of a dynamical system?.

Suppose that nonlinear equations are per-
turbed by noise. There are two ways that noise

4) The van der Pol equation is described as % +u(1 —x2)%+w>x=
0. The equilibrium point (x, *) of the equation is (0, 0) and the
point is stable if x<0 and unstable if £>0. In the latter case, the
system shows the limit cycle oscillation. The FHN equations are ob-

tained by the Liénard transformation of the present equation.

affects the equations. Noise can affect a sys-
tem in an additive manner and/or in a multi-
plicative manner. It provides essential changes
in a bifurcation structure of the noise-free sys-
tem due to Stratonovich and in fact this can be
confirmed by a simulation experiment. Thus
role of noise can not be neglected because it
sometimes affects the behavior of a system es-
sentially. Noise is not merely noise. The change
in responses due to bifurcation is generally
drastic. May the living organism accept such a
drastic change provided that it behaves sub-
ject to a noise-free dynamical system? In re-
ality, a control system realizes smooth and
redundant motion by interfering nonlinearity
of the system with environmental noise. Noise
can stabilize system’s responses and serve to
make the system robust. According to our
computer simulation, noise may also serve to
make the system’s input-output relation linear.
Noise has been considered as nuisance in the
conventional science, but it possibly plays a
role in the emergence of biological functions.
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